

Inhalation exposure and dermal deposition of airborne particles during electrostatic spraying of liquid TiO2-based nanocoating

Antti J. Koivisto¹, Alexander C.Ø. Jensen¹, Kirsten I Kling¹, Bjarke Mølgaard², Tareq Hussein², Ismo K. Koponen¹, Ilse L. Tuinman³, Marcus Levin^{1,4}, Asger W. Nørgaard¹, Keld A. Jensen¹

¹ National Research Centre for the Working Environment, Copenhagen, Denmark

² Department of Physics, University of Helsinki, Helsinki, Finland

³TNO Quality of Life, CBRN Protection, Rijswijk, The Netherlands

⁴ Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

Outline

- Electrostatic spray (ESS) system
- Experimental methods
 - Spray application and emission room
 - Indoor aerosol model
- Results
 - Measurements vs. modelings
- Summary and conclusions

Electrostatic spray (ESS)

- Atomizes droplets in the nanometer range
- Charged particles have reduced coagulation and increased deposition efficency.
- Use in industry: e.g. painting, agriculture, micro- and nanothin film deposition
- ESS transfer efficiency is ~8 times higher than in traditional spraying systems (Kabashima et al. 1995)

Electrostatic system: ON OFF

Figures adopted from Electrostatic Spraying Systems, Inc. SC-ET Owner's manual

Experimental

Ventilation rate = $0.50\pm0.05 \text{ h}^{-1}$, RH = $50\pm5 \%$, T = $23\pm1 \degree \text{C}$

Properties of ESS system:

- $Q_{precursor} = 0.9 \text{ g s}^{-1} (\text{TiO}_2 0.5 \% \text{ vol/vol})$
- $Q_{air} = 1.9 \text{ L min}^{-1}$
- $U_{nozzle} = 1.2 \text{ to } 1.3 \text{ kV}$

General dynamic equation of aerosol particles (e.g. Hussein et al. 2014)

$$\frac{dN_i(t)}{dt} = \underbrace{N_{out,i}\lambda P}_{\mbox{O}} - \underbrace{(\lambda + \lambda_{d,i})N_i(t)}_{\mbox{O}} + \underbrace{S_i(t)}_{\mbox{O}} + \underbrace{\frac{dN_i(t)}{dt}}_{\mbox{$coagulation$}}$$
 Background particles from particles from ventilation air deposition (\$\lambda\$) and ventilation (\$\lambda\$) and deposition (\$\lambda_{d,i}\$)

Terms and parameters:

$N_i(t)$	Indoor aerosol concentration, [cm ⁻³]
$N_{out,i}(t)$	Outdoor aerosol concentration, [cm ⁻³]
P	Particle penetration factor
Q	Ventilation flow, [m³h-1]
$S_i(t)$	Indoor particle source, [cm ⁻³ h ⁻¹]
$\lambda_{d,i}$	Particle deposition rate, [h-1]
λ	Ventilation rate, [h ⁻¹]
i	size section

Results

Emission rates from the spray process:

- Particle number S_N:
 - 9×10^9 to 30×10^9 s⁻¹
- Volume S_V (spherical particle, $\rho = 4$ g cm⁻³):
 - 0.003 to 0.006 mL s⁻¹
- TiO₂ volumetric feed rate from the ESS:
 - 0.0045 mL s⁻¹

NF/FF modelings

Surface deposition

- Near Field < 10 μm
- Far Field < 5 μm
- Face < 500 nm (~3 minutes)

Summary

Measurements:

- Size resolved concentrations (N, V)
- Dispersion (NF/FF, personal)
- Precursor feed rates
- Size resolved surface deposition (NF/FF, personal)
- Particle characterization (density, morphology, composition)

Modelings:

- Emission rates to air (S_N, S_V)
- Deposition rates (walls, floor)
- Concentrations (N, V)

Comparison of measurements with:

Exposure assessment models/tools

Conclusions

- Electrostatic spray (ESS) is promising technique for NOAA coatings
- Particles were fully mixed

 single box
- Indoor aerosol models can esitmate airborne particle emission rates
- Transfer efficiency = S_V $S_{precursor}$

References

- Kabashima J, Giles DK, Parrella MP. (1995) Electrostatic sprayers improve pesticide efficacy in greenhouses. California Agriculture, 49:32-35.
- Cherrie JW. (1999) The Effect of Room Size and General Ventilation on the Relationship Between Near and Far-Field Concentrations. *Appl Occup Environ Hyg*; 14: 539-546.
- Zhang Y, Banerjee S, Yang R, Lungu C, Ramachandran G. (2009) Bayesian Modeling of Exposure and Airflow Using Two-Zone Models. *Ann Occup Hyg*; 53: 409–424.
- Hussein T, Wierzbicka A, Löndahl J, Lazaridis M, Hänninen O. (2014) Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose. *Atmos Environ*; http://dx.doi.org/10.1016/j.atmosenv.2014.07.034

Thank you!